Supplementary Information for “ Solving a Higgs 1 optimization problem with quantum annealing for 2 machine learning ”
نویسندگان
چکیده
1Department of Physics, California Institute of Technology, Pasadena, 91125, USA 5 2Department of Physics, and Center for Quantum Information Science & Technology, University of Southern 6 California, Los Angeles, California 90089, USA 7 3Departments of Electrical Engineering, Chemistry and Physics, and Center for Quantum Information Science & 8 Technology, University of Southern California, Los Angeles, California 90089, USA 9 ◦ Now at DeepMind 10 *[email protected] 11
منابع مشابه
Traffic Flow Optimization Using a Quantum Annealer
Quantum annealing algorithms belong to the class of meta-heuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum processing units (QPUs) produced by D-Wave Systems [1], have been subject to multiple analyses in research, with the aim of characterizing the technology’s usefulness for optimization and sampling tasks ...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملEfficiency of quantum versus classical annealing in non-convex learning problems
Quantum annealers aim at solving non-convex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists in designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to ...
متن کاملHybrid artificial immune system and simulated annealing algorithms for solving hybrid JIT flow shop with parallel batches and machine eligibility
This research deals with a hybrid flow shop scheduling problem with parallel batching, machine eligibility, unrelated parallel machine, and different release dates to minimize the sum of the total weighted earliness and tardiness (ET) penalties. In parallel batching situation, it is supposed that number of machine in some stages are able to perform a certain number of jobs simultaneously. First...
متن کاملA Simulated Annealing Algorithm for Multi Objective Flexible Job Shop Scheduling with Overlapping in Operations
In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and gla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017